Ведущие поставщики фасадных материалов на рынок России
Материалов: 1076. Статей: 1140. Компаний: 1267. Марок: 317. Фасадов: 1239. Посетителей в мес: 28194
image1/1x1.gif image1/1x1.gif image1/1x1.gif image1/1x1.gif
 
Зарегистрироваться!

Войти в систему
Ведущие поставщики
Виды фасадов
Вентфасады
Светопрозрачные
Мокрые фасады
Изоляция
Доска объявлений
Предложения
Спрос
Реклама
Фасадные тендеры
 требуется бригада монтажников светопрозрачных конструкций в Реутов
Требуется бригада монтажников на сборку и монтаж стоечно-ригельной
 Ищу подрядчиков на монтаж вент фасада под ключ
Ищу подрядчика для устройства вент. фасада из композита, фибро,
 фасадные материалы из натурального дерева
интересуют производители фасадных облицовочных материалов из
 Куплю кремогранит бежевый матовый 1000кв\м
Срочно куплю фасадный керамогранит 600х600х10мм бежевый –матовый
 Требуются монтажники НВФ
Предлогаем стабильную ,высокооплачиваемую работу монтажникам
Поиск по порталу
В каталоге фирм
В каталоге материалов
В статьях
Каталог цветов RAL
Мир фасадов  
 Лидерство на инновациях
Крупнейшие компании по производству строительных материалов ищут свои...
 Зона высокого доверия
Компания Металл Профиль, активно принимает участие в оформлении зданий...
 Реконструкция типового советского здания в образовательный центр
Завершилась реконструкция типового советского здания в образовательный...
 Развивающие субботы с NORDFOX в университете BI GROUP
9 ноября 2019 года в Корпоративном Университете BI Group (г. Нур-Султан,...
 NORDFOX В БЕЛАРУСИ
Важным событием для компании NORDFOX стал выход на рынок Республики...
 QS-материалы Sto
Почему именно эти материалы подойдут для работы осенью или весной...
 EPDM-шайбы: из чего сделана прокладка, можно ли их красить?
Чтобы ответить на вопрос клиента, инженеры BEST-Крепёж испытали на...
 Фасадные декоративные элементы
Долговечность и эстетическая привлекательность декоративных фасадных...
Каталог "Лучшие фасады "
Рекламодателям и посетителям портала
Форум
 Полиуретановая лепнина потрескалась
Vladimir K » Обращался в фирму Петергоф для создания дизайн-проекта и монтажа лепного
 Требуются бригады фасадчиков
Николай » Здравствуйте Дмитрий, если пересмотрите стоимость сможем сотрудничать,
  Сверло алмазное DD7X9 (Diamond Drill)
 Расчет прочности кассеты из композита
Александр » Марина, произвести расчет кассеты из композита или получить консультацию
 Легкий фасадный декор
Андрей » Согласен, уже лет 5 занимаюсь производством декорэлементов из фасадного
Новые фирмы на портале
СК БЕЛСТРОЙ
(Москва) Компания СК «БЕЛСТРОЙ» — это абсолютно реальная компания с реальными
РемСервис "Plumber"
(Хабаровск) Отделка фасадо зданий.
Камнемир
(Санкт-Петербург) Поставка камня для фасадов, проектирование и изготовление деталей
GuteAnker
(Казань) Цанговые анкеры GA для скрытого крепления фасадов, сверла и
GuteAnker
(Казань) Производство и продажа анкеров GA для скрытого крепления НВФ,
ВоротаСтройМастер
(Воронеж) Интернет магазин ВСМ - официальный поставщик ограждающей и фасадной
SmartСase
(Минск) Красивые дизайнерские чехлы, защитные и «умные» кейсы, пленки,
 
 Главная / Журнал / Раздел: Актуально / Увеличение толщины теплоизолирующего слоя в системах НВФ
   

 
        

Увеличение толщины теплоизолирующего слоя в системах НВФ

Анализ целесообразности увеличения толщины теплоизолирующего слоя в системах НВФ в целях повышения энергоэффективности

В последнее время все чаще поднимается вопрос энергоэффективности. Разрабатываются новые методики по ее учету, вводятся новые требования и издаются законы. 27 ноября 2009 г. вступил в силу Федеральный закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно ему, вводятся новые требования к зданиям, строениям и сооружениям, конструктивным и инженерно-техническим решениям, отдельным элементам, конструкциям зданий, к используемым устройствам и технологиям и др., которые планируется пересматривать каждые 5 лет с целью повышения энергоэффективности. Но уже сейчас многие объекты им не соответствуют. Через 5, 10 и более лет их станет количественно больше [1]

Здание тем более энергоэффективно, чем меньше оно теряет тепла, энергии, чем выше сопротивление теплопередаче его ограждающих конструкций. Есть несколько вариантов, помогающих снизить энергетические затраты [2], среди них можно выделить:
- применение новых технологий, конструкций;
- применение приточно-принудительной системы вентиляции с рекуперацией;
- использование возобновляемых источников тепловой энергии;
- применение более энергоэффективных инженерных приборов и оборудования (в том числе осветительного);
- автоматическое регулирование температуры теплоносителя;
- увеличение толщины теплоизолирующего слоя.
Пример увеличения толщины теплоизоляционного слоя встречается в технологии «пассивного дома» (англ. passive house). Это энергоэффективное здание, соответствующее наивысшему стандарту энергосбережения в мировой практике индивидуального и многоэтажного строительства. Такая технология не так давно известна в России и уже долгое время находит применение в странах Европы и США. Для «пассивного дома» энергопотребление составляет около 10% от удельной энергии на единицу объема, потребляемой большинством современных зданий. Незначительное отопление требуется лишь в период отрицательных температур. В идеале «пассивный дом» является независимой энергосистемой, вообще не требующей расходов на поддержание комфортной температуры воздуха и воды [3]. Основным принципом проектирования энергоэффективного дома является использование всех возможностей сохранения тепла. В частности, в таких зданиях предусмотрена увеличенная толщина теплоизоляции. В Швеции по стандартам для «пассивного дома» толщина изоляционного материала в стене должна быть не менее 335 мм, а в крыше – 500 мм [4]. Однако решение применения толстой теплоизоляции для резкого сокращения потерь тепла вызывает сомнение в его экономической обоснованности. Рассмотрим это на примере систем навесных вентилируемых фасадов (НВФ). Строительство вентилируемых фасадов – это простой и одновременно надежный вариант для снижения энергопотерь дома и повышения его энергоэффективности [5]. Они позволяют легко и просто реконструировать уже эксплуатируемое здание и повысить сопротивление теплопередаче его ограждающих конструкций, соответствуют недавно принятым тепловым требованиям и могут применяться для строительства зданий, улучшают внешний вид здания, звукоизоляцию, влажностный режим ограждающих стен, сопротивляемость атмосферным воздействиям и др. [6]. Стоимость подконструкции НВФ напрямую зависит от толщины теплоизоляции [7]. Чем больше толщина утеплителя, тем больше должен быть вынос (расстояние от стены до облицовки). Подконструкция становится более массивной, для нее требуется большее количество элементов. Возникает необходимость использования более длинных кронштейнов, удлинителей, увеличивается количество заклепок, шайб и проч. [8]. Увеличение толщины теплоизолирующего слоя таких систем по сравнению с требуемой толщиной по теплотехническому расчету экономически нецелесообразно. Вентилируемые фасады для экономии таким способом не подходят. Чтобы убедиться в этом, проведем следующий анализ.
Проведем теплотехнический расчет, методика которого базируется на требованиях СНиП 23-02-2003 «Тепловая защита зданий» [9] и СП 23-101-2004 «Проектирование тепловой защиты зданий» [10], а также на рекомендациях для систем НВФ [11]. Для расчета в качестве несущей подконструкции фасада принимается решение компании «Юкон Инжиниринг» АТS 234а с видимым методом крепления облицовки. И следующая конструкция внешней стены с различной толщиной теплоизолирующего слоя [12]:
- кирпичная кладка (250 мм);
- утеплитель «ROCKWOOL ВЕНТИ БАТТС Д» (80–250 мм);
- воздушная прослойка (60 мм);
- плитки керамогранита 600 х 600 (10 мм).
Полученные по теплотехническому расчету результаты сводим в таблицу 1.
Далее делаем расчет затрат на отопление. Для этого находим потери теплоты за 10 лет по формуле [14]: (рис.2), где: – P теплопотери, Вт; n – срок (10 лет); Q – теплопотери за определенный срок (10 лет).
При этом изменение теплопотерь со временем имеет следующую зависимость: (рис. 2), где Qпост – постоянные теплопотери, Qдоп – теплопотери, связанные с деградацией утеплителя.
Зависимость была определена на 50 лет, что соответствует безремонтному сроку эксплуатации систем навесных вентилируемых фасадов [13].
Далее, учитывая изменения тарифа, определяем затраты на электроэнергию (отопление принимаем электрическое) за 10 лет [14]: (рис. 3) Стоимость за электроэнергию за любой год Sn определяется как произведение тарифа cn на электроэнергию Jn, израсходованную за n-й год.
Далее рассчитываем стоимость подконструкции системы НВФ для каждой толщины утеплителя, прибавляем к ней затраты на теплоизоляцию и строим график зависимости стоимости подконструкции + утеплитель и затрат на электроэнергию, выраженную в рублях, от толщины утеплителя (рис. 4).
Толщина утеплителя, равная 120 мм, – это оптимальная толщина утеплителя в рассматриваемой системе, при описанной выше конструкции внешней стены [15]. Сопротивление теплопередаче стены с такой толщиной теплоизоляции соответствует требованиям нормативных документов. Соответственно, если увеличивается толщина теплоизоляции, повышается сопротивление теплопередаче, снижаются затраты на отопление и повышается стоимость подконструкции и утеплителя. И как можно увидеть из рис. 1, в результате на подконструкцию и теплоизоляцию мы потратим больше, чем сэкономим на электроэнергии за 10 лет.
Для решения вопроса энергоэффективности необходим комплексный подход. Экономия за счет только лишь увеличения сопротивления теплопередаче бессмысленна. Важно заранее просчитать окупаемость энергосберегающих мероприятий, предусмотреть все возможные затраты, найти новые решения, пути. Одним из возможных решений при применении навесных вентилируемых фасадов может стать разработка и внедрение новых энергосберегающих технологий для этих систем. Примером реализации такой разработки может выступить навесной вентилируемый энергосберегающий фасад с применением технологии солнечных батарей (разработка «Юкон Инжиниринг», 2007 г.) и активные фасадные системы.

Для решения вопроса энергоэффективности необходим комплексный подход. Экономия за счет только лишь увеличения сопротивления теплопередаче бессмысленна. Важно заранее просчитать окупаемость энергосберегающих мероприятий, предусмотреть все возможные затраты, найти новые решения, пути. Одним из возможных решений при применении навесных вентилируемых фасадов может стать разработка и внедрение новых энергосберегающих технологий для этих систем

Немова Дарья, инженер,
кафедра «ТОЭС» ГОУ «СПбГПУ»

Литература

1. Федеральный закон № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации».
2. Горшков А.С. Энергоэффективность в строительстве: вопросы нормирования и меры по снижению энергопотребления зданий/А.С. Горшков//Инженерно-строительный журнал. 2010. №1. С. 9–13.
3. Тазеева Е.Т., Горшков А.С. Расчет энергоэффективных зданий//Строительная теплофизика и энергоэффективное проектирование ограждающих конструкций зданий: сборник трудов Всеросс. научно-технич. конф. СПб.: Изд-во Политехн. ун-та, 2011. С. 74–75.
4. Смирнова Т. Требования к теплоизоляции в конструкции вентилируемой фасадной системы/Т. Смирнова// Academia. Архитектура и строительство. 2009. № 5. С. 427–429.
5. Малоедов С.Д., Выгузов В.Н. Вентилируемые фасады – эффективное решение проблемы энергосбережения// Строительные материалы. 2001. № 5. С. 24.
6. Стародубцев В.Г., Поветкин С.В. Обеспечение эксплуатационных свойств ограждающих конструкций//Промышленное и гражданское строительство. 2009. № 5. С. 45–46.
7. Гликин С.М., Кодыш Э.Н. Навесные фасадные системы с эффективной тепоизоляцией и вентилируемым воздушным зазором//Промышленное и гражданское строительство. 2008. № 9. С. 36–37.
8. Горшков А.С. Конструктивное исполнение вентилируемого фасада повышенной надежности/А.С. Горшков, Д.Ю. Попов, А.В. Глумов//Инженерно-строительный журнал. 2010. № 8 (18). С. 5–9.
9. СНиП 23-02-2003 «Тепловая защита зданий».
10. СП 23-101-2004 «Проектирование тепловой защиты зданий».
11. Бутовский И.Н. Особенности теплотехнического расчета теплозащиты и энергопотребления современных жилых и общественных зданий при оценке их энергоэффективности/И.Н. Бутовский//Academia. Архитектура и строительство. 2009. № 5. С. 356–361.
12. Мехнецов И.А. Критерии выбора утеплителей для навесных вентилируемых фасадов//Промышленное и гражданское строительство. 2006. № 7. С. 54–58.
13. Ананьев А.А., Гохберг. Ю.Ц. Пути повышения срока безремонтной службы наружных стен жилых зданий, облицованных кирпичом//Промышленное и гражданское строительство. 2011. № 1.
14. Сапегина Е.А. Энергоэффективность системы навесного фасада с воздушным вентилируемым зазором: дисс. магистра техники и технологии: защищена 17.06.2009/ГОУ СПбГПУ, кафедра «Технология, организация и экономика строительства».
15. Умнякова Н.П. Элементы навесных вентилируемых фасадов, определяющие их теплозащитные качества//Academia. Архитектура и строительство. 2009. № 5. С. 372 –380.
16. Бердюгин И.А.Теплоизоляционные материалы в строительстве. Каменная вата или стекловолокно: сравнительный анализ/И.А Бердюгин//Инженерно-строительный журнал. 2010. №1. С. 26–31.
17. Кнатько М.В. К вопросу о долговечности и энергоэффективности современных ограждающих стеновых конструкций жилых, административных и производственных зданий/М.В. Кнатько, М.Н. Ефименко, А.С. Горшков//Инженерно-строительный журнал. 2008. № 2. С. 50–53.
18. Ступаков А.А. Обследование и мониторинг вентилируемого фасада с облицовкой плитами из натурального гранита/А.А. Ступаков//Academia. Архитектура и строительство. 2009. № 5. С. 530–533.
19. Гагарин В.Г. Теплофизические свойства современных стеновых ограждающих конструкций многоэтажных зданий/В.Г. Гагарин//Сборник трудов II Всероссийской научно-технической конференции «Строительная теплофизика и энергоэффективное проектирование ограждающих конструкций зданий» 10–11.12.2009. СПб., изд-во СПбГПУ, 2009. С. 33–45.
20. Широкородюк В.К. Влияние волокнистой структуры на прочность и теплопроводность минераловатных//Труды Кубанского государственного аграрного университета. 2008. № 12. С. 203–208.
21. Теплоизоляция двойной плотности для вентилируемых фасадов//Энергосбережение. 2008. № 4. С. 82–83.

Автор/источник: Журнал Лучшие Фасады Все статьи Журнал Лучшие Фасады >>>

Марка «Разные марки» в Каталоге материалов >>>
Поставщики марки «Разные марки» в Каталоге Фирм >>>

Уникальные читатели статьи: 3113
Посетили сегодня: 2 Просмотров статьи: 3524

Последние новости:


    21.03.2020
  • Подведены первые итоги арт-проекта «Цвета потери тепла»
    Более 80 тепловых «портретов» различных зданий в пяти регионах России, свыше 220 заявок от жителей на съемку их домов, и предварительный рейтинг объектов, претендующих на звание самых теплых. Таковы первые промежуточные итоги социального проекта «Цвета...
    10.03.2020
  • Ваше доверие ― наша ответственность
    Для строительства нового аэропорта «Гагарин» была использована продукция Компании Металл Профиль. Компания Металл Профиль поставляет материалы для строительства различных объектов, в том числе режимных, например, аэропортов. Аэропорт ― объект...
    01.03.2020
  • Поставка фиброцементной плиты на ЖК «Авентин»
    ГК «Инград» используют негорючие фиброцементные плиты ВИКОЛОР на своем ЖК «Авентин», корпус 1. Есть вопросы по вентилируемому фасаду из фиброцементных плит? +7 (499) 348-85-75 info@versalmsk.ru...
    01.03.2020
  • Поставка фиброцементной плиты на ЖК «Спутник»
    ООО Версаль осуществляет поставки негорючей фиброцементной плиты ВИКОЛОР на ЖК «Спутник» 3 очередь (корпуса 7, 8, 9, 10). Жилой комплекс комфорт-класса «Спутник» возводится в деревне Раздоры Одинцовского района Московской области, его строительством...
    26.02.2020
  • СК Алюмир - завод витражных конструкций
    Добрый день.Основным направлением деятельности компании является монтаж и обустройство навесных вентилируемых фасадов, штукатурных фасадов, а также остекление (монтаж светопрозрачных алюминиевых и ПВХ-конструкций)....
    22.02.2020
  • Анкеры GA Hs скрытого крепления НВФ
    Получено техническое свидетельство ФЦН Минстроя РФ за номером ТС 5934-20 на цанговые анкеры GuteAnker марки GA Hs для невидимого способа крепления НВФ....

Представляем лучшие фасадные работы в России и в мире

Фасад лучшего небоскреба 2018 года
Фасад лучшего небоскреба 2018 года
Озелененные фасады - общемировой тренд
Водопад на фасаде небоскреба
Водопад на фасаде небоскреба
Водопад на китайском небоскребе высотой более 100 метров. И что из этого вышло
Бассейн в фасаде небоскреба
Бассейн в фасаде небоскреба
Небоскреб на Гавайях вместил в себя несочетаемое
Мохнатый фасад микро-офиса
Мохнатый фасад микро-офиса
Натуральная щетина в фасаде
 
 

 

 

   
 
Объявления +
31.03.2020
Изготовим гранитные плиты качественно и в срок! Производство гранитных плит для фасада. Карьеры РФ, Украина. Блок в наличии. Минимальные сроки изготовления. Доставка ..
26.03.2020
производство металлокассет толщиной 0.7мм продам кассеты 1100р м2 отгрузка с Екб. 1fasad@mail.ru ..
24.03.2020
Фасадная эластичная краска • Краска «ДИАКОЛОР-Фаса д». Краска обладает достаточной эластичностью, чтобы не растрескиватьс я на пенопластовых ..
Наши издания
Спец. раздел

Пожаро-
безопасность
фасадов

[ Специальный раздел ]

 


Итоговый ролик Building Skin Russia 2019
4 главных мировых тренда в остеклении. Glasstec 2018
Рынок сэндвич-панелей: низкий и высокий сегменты
Рассылка

Подписаться
на уникальную рассылку: еженедельный
обзор фасадного рынка

E-mail
Имя
Партнеры
 
 
 

Наши проекты:

  



НАШИ ИЗДАНИЯ:

Контакты

Карта сайта

  Портал ФАСАДЫ РОССИИ
Яндекс.Метрика
© Windows Media Group. При копировании информации активная ссылка на www.fasad-rus.ru обязательна!
Телефон редакции: +7 495 374-8905 Реклама на портале
Подпишитесь на рассылку:
Еженедельный обзор фасадного рынка

Ваш E-mail
Ваше имя

[ П р и м е р ]