Ведущие поставщики фасадных материалов на рынок России
Материалов: 1076. Статей: 1139. Компаний: 1259. Марок: 317. Фасадов: 1236. Посетителей в мес: 28194
image1/1x1.gif image1/1x1.gif image1/1x1.gif image1/1x1.gif
 
Зарегистрироваться!

Войти в систему
Ведущие поставщики
Виды фасадов
Вентфасады
Светопрозрачные
Мокрые фасады
Изоляция
Доска объявлений
Предложения
Спрос
Реклама
Фасадные тендеры
 Ищу подрядчиков на монтаж вент фасада под ключ
Ищу подрядчика для устройства вент. фасада из композита, фибро,
 фасадные материалы из натурального дерева
интересуют производители фасадных облицовочных материалов из
 Куплю кремогранит бежевый матовый 1000кв\м
Срочно куплю фасадный керамогранит 600х600х10мм бежевый –матовый
 Требуются монтажники НВФ
Предлогаем стабильную ,высокооплачиваемую работу монтажникам
 Срочно нужен керамогранит бежевый матовый!!
Срочно куплю из керам.гранит 600х600х10мм, 1сорта. (бежевый
Поиск по порталу
В каталоге фирм
В каталоге материалов
В статьях
Каталог цветов RAL
Мир фасадов  
 Зона высокого доверия
Компания Металл Профиль, активно принимает участие в оформлении зданий...
 Реконструкция типового советского здания в образовательный центр
Завершилась реконструкция типового советского здания в образовательный...
 Развивающие субботы с NORDFOX в университете BI GROUP
9 ноября 2019 года в Корпоративном Университете BI Group (г. Нур-Султан,...
 NORDFOX В БЕЛАРУСИ
Важным событием для компании NORDFOX стал выход на рынок Республики...
 QS-материалы Sto
Почему именно эти материалы подойдут для работы осенью или весной...
 EPDM-шайбы: из чего сделана прокладка, можно ли их красить?
Чтобы ответить на вопрос клиента, инженеры BEST-Крепёж испытали на...
 Фасадные декоративные элементы
Долговечность и эстетическая привлекательность декоративных фасадных...
 Что за «нержавейка» такая - А2Р или А2К (и т.п.)?
Давайте разберёмся вместе, что это за обозначение...
Каталог "Лучшие фасады "
Рекламодателям и посетителям портала
Форум
 Требуются бригады фасадчиков
Николай » Здравствуйте Дмитрий, если пересмотрите стоимость сможем сотрудничать,
  Сверло алмазное DD7X9 (Diamond Drill)
 Расчет прочности кассеты из композита
Александр » Марина, произвести расчет кассеты из композита или получить консультацию
 Легкий фасадный декор
Андрей » Согласен, уже лет 5 занимаюсь производством декорэлементов из фасадного
  Теплая штукатурка
Новые фирмы на портале
Мосметпром / Mosmetprom.ru
(Москва) В нашей компании Mosmetprom Вы всегда можете купить металл и
РЕМПОДРЯД
(г.Екатеринбург) Навесные Вентилируемые Фасады
РЕМПОДРЯД
(г.Екатеринбург) Навесные Вентилируемые Фасады
РЕМПОДРЯД
(г.Екатеринбург) Проектирование Комплектация Монтаж Навесных вентилируемых
Borco Engineering
(Москва) Команда опытных высококвалифицированных специалистов готова осуществить
ПСК Фасст
(Москва) Производственно-строительная компания «Фасст» свыше пяти лет
ООО Кселлма
(Минск) Производство легких, негорючих фасадных декоративных элементов
 
 Главная / Журнал / Раздел: Актуально / Повышение теплофизических качеств светопрозрачных конструкций
   

 
        

Повышение теплофизических качеств светопрозрачных конструкций

В настоящее время в России применяются следующие основные способы повышения энергоэффективности светопрозрачных конструкций

Программа энергосбережения в строительстве и эксплуатации зданий направлена на всемерное снижение потребления энергии, повышение энергоэффективности зданий. Большую роль при этом играют светопрозрачные ограждения – окна, витражи и другие, поскольку современный уровень их теплозащиты значительно уступает теплозащите стеновых ограждающих конструкций зданий и теплопотери через светопрозрачные ограждающие конструкции доходят до 40% от всех теплопотерь здания. При этом теплопередача в наружных ограждающих конструкциях осуществляется по трем направлениям: теплопроводность, конвекция и тепловое излучение. В непрозрачных стеновых конструкциях ограничение теплопередачи осуществляется в основном в соответствии с принципами теплопроводности и с использованием теплоизоляционных материалов (пенопласта, стекловолокна, пенополиуретана и др.)

В настоящее время в России применяются следующие основные способы повышения энергоэффективности светопрозрачных конструкций:
- переход в стеклопакетах на теплоизоляционные дистанционные рамки;
- применение в стеклопакетах  стёкол с теплоотражающими покрытиями;
- заполнение стеклопакетов инертными газами. 
В светопрозрачных конструкциях (СПК) при степени остекления от 0,6 и выше тепловые потери связаны в большей степени с тепловым излучением и конвективным теплообменом. В связи с этим при разработке и проектировании СПК большое внимание уделяется мероприятиям по ограничению конвективной и лучистой составляющей теплопередачи. Так, например, при ограничении размеров полостей в профильных системах и снижении конвективной составляющей теплопередачи можно добиться существенного увеличения термического сопротивления светонепрозрачного элемента СПК. Как показывает практика эксплуатации и расчеты, замена трехкамерного ПВХ-профиля на пятикамерный позволяет повысить теплозащитные качества светонепрозрачного участка СПК более чем 15%. А при применении в стеклопакетах мягкого теплоотражающего покрытия и замещении в межстекольном пространстве воздуха на криптон позволяет повысить теплозащитные качества светопрозрачного участка до 3 и более раз. Кроме того, замена алюминиевой дистанционной рамки на менее теплопроводную рамку, например из термикса, может существенно повысить температуру поверхности краевой зоны. Энергоэффективность мероприятий по ограничению конвективной и лучистой составляющей теплопередачи в СПК на примере ПВХ и алюминиевых блоков и их элементов представлена на рис. 1–16. (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 71-75)

Трехкамерный ПВХ-профиль

На рис. 1 представлена изотерма по сечению трехкамерного ПВХ-профиля со стальным армирующим профилем, заполненным калибровочной панелью, при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,55 м2 °С/Вт с нормативными сопротивлениями теплопереходу на границе воздух – конструкция. При расчете камеры в профиле приняты как замкнутые воздушные прослойки. Коэффициент теплопроводности ПВХ принят равным 0,17 Вт/м2 °С, коэффициент теплопроводности стального армирующего профиля – соответственно 50 Вт/м2 °С, коэффициент теплопроводности резинового уплотнителя – соответственно 0,24 Вт/м2 °С.

Пятикамерный ПВХ-профиль

На рис. 2 представлена изотерма по сечению пятикамерного ПВХ-профиля со стальным армирующим профилем, заполненного калибровочной панелью, при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,64 м2 °С/Вт с нормативными сопротивлениями теплопереходу на границе воздух – конструкция, что на 16% превышает сопротивление теплопередаче трехкамерной системы рама + створка. При расчете характеристики материалов профиля приняты такие же, как и для трехкамерного профиля.
Для оценки влияния структуры стеклопакета на его теплозащитные качества проведены теплотехнические исследования разных модификаций двухкамерного стеклопакета одной и той же ширины (32 мм).

Стеклопакет заполненный воздухом

На рис. 3 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного осушенным воздухом при перепаде температур -20°С – +20°С. При расчете приняты нормативные значения сопротивлений теплопереходу на границе воздух – стекло, а коэффициент теплопроводности стекла принят равным 1,0 Вт/м2 °С. Сопротивление теплопередаче по центру исследованного стеклопакета составило 1/1,86 = 0,54 (м2 °С/Вт).

Стеклопакет заполненный аргоном

На рис. 4 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного аргоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущем расчете. Сопротивление теплопередаче по центру исследованного стеклопакета составило 0,59 (м2°С/Вт). Замещение осушенного воздуха на аргоновую смесь позволило повысить теплозащитные качества рассмотренного СПД до 9%.

Стеклопакет заполненный криптоновой смесью

На рис. 5 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного криптоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Сопротивление теплопередаче по центру исследованного варианта стеклопакета составило  0,65 (м2 °С/Вт). Замещение осушенного воздуха на криптоновую смесь в СПД с обычными стеклами позволило повысить его теплозащитные качества с 0,54 (м2 °С/Вт) до 0,65 (м2 °С/Вт) – более чем на 20%.

Стеклопакет со стеклами с мягкими покрытиями

На рис. 6 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с двумя стеклами с  мягкими покрытиями и заполненного осушенным воздухом. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Сопротивление теплопередаче по центру исследованного варианта стеклопакета составило 0,96 (м2 °С/Вт). Использование в СПД двух стекол с мягким покрытием позволило повысить его теплозащитные качества с 0,54 (м2 °С/Вт) до 0,96 (м2 °С/Вт) – более чем на 75%.

Стеклопакет со стеклами с мягкими покрытиями и криптоновой смесью

На рис. 7 (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 72) представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с двумя стеклами с  мягкими покрытиями и заполненного криптоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Сопротивление теплопередаче по центру исследованного варианта стеклопакета составило 1,74 (м2 °С/Вт). Использование в СПД двух стекол с мягким покрытием и одновременным замещением осушенного воздуха на криптоновую смесь в СПД позволило повысить его теплозащитные качества с 0,54 (м2 °С/Вт) до 1,74 (м2 °С/Вт) – более чем в три раза.

Стеклопакет с алюминиевыми дистанционными рамками

На рис. 8 представлены изотермы  стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с алюминиевыми дистанционными рамками. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Коэффициент теплопроводности алюминиевого сплава принят равным 160 Вт/м °С. Температура на поверхности стеклопакета в зоне    алюминиевой дистанционной рамки при tн= -20°С и   tв= +20оС  составляет не более 0,2°С (недопустимую всеми действующими нормативными документами).

Стеклопакет с дистанционными рамками из термикса

На рис. 9 представлены изотермы  стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с дистанционными рамками из термикса. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Коэффициент теплопроводности термикса принят равным 0,17 Вт/м °С. Температура на поверхности стеклопакета в зоне дистанционной рамки при tн= -20°С и   tв= +20°С составляет более 10°С. Таким образом, замена в рассматриваемой СПД алюминиевой дистанционной рамки на менее теплопроводную рамку из термикса  повысило температуру в краевой зоне стеклопакета на  10°С.

Трехкамерный ПВХ-профиль со стальным армированием

На рис. 10 (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 73) представлена изотерма по сечению трехкамерного ПВХ-профиля со стальным армирующим профилем, заполненного стеклопакетом СПД 4-10-4-10-4 с алюминиевой дистанционной рамкой,  при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,46 м2 °С/Вт с нормативными сопротивлениями теплопереходу на границе воздух – конструкция. При расчете камеры в профиле приняты как замкнутые воздушные прослойки. Коэффициент теплопроводности ПВХ принят равным 0,17 Вт/м °С, коэффициент теплопроводности стального армирующего профиля – соответственно 50 Вт/м °С, коэффициент теплопроводности резинового уплотнителя – соответственно 0,24 Вт/м °С. Температура на поверхности рамы в краевой зоне составляет не более 5,4°С и не всегда удовлетворяет  требованиям действующих нормативных документов.

Пятикамерный ПВХ-профиль со стальным армированием и стеклопакетом с дистанционной рамкой из термикса

На рис. 11 (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 74) представлена изотерма по сечению пятикамерного ПВХ-профиля со стальным армирующим профилем, заполненного стеклопакетом СПД 4-10-4-10-4 с дистанционной рамкой из термикса  при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,59 (м2 °С/Вт) с нормативными сопротивлениями теплопереходу на границе воздух – конструкция. При расчете, как и в предыдущем расчете, камеры в профиле приняты как замкнутые воздушные прослойки. Коэффициент теплопроводности ПВХ принят равным 0,17 Вт/м °С, коэффициент теплопроводности стального армирующего профиля – соответственно 50 Вт/м °С, коэффициент теплопроводности резинового уплотнителя – соответственно 0,24 Вт/м °С. Температура на поверхности рамы в краевой зоне составляет 10,9°С и удовлетворяет  требованиям действующих нормативных документов для большинства климатических районов РФ.

Стеклопакет с обычными стеклами заполненном воздухом

На рис. 12 (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 74) представлены результаты теплотехнического расчета оконного блока со стеклопакетом СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного осушенным воздухом при перепаде температур -20°С – +20°С. При расчете приняты нормативные значения сопротивлений теплопереходу на границе воздух – стекло, а коэффициент теплопроводности стекла принят равным 1,0 Вт/м °С. Приведенное сопротивление теплопередаче такого оконного блока составило не более  0,51 (м2 °С/Вт) при степени остекления 0,68.

Стеклопакет со стеклами с мягким покрытием

На рис. 13 (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 74) представлены результаты теплотехнического расчета оконного блока со стеклопакетом СПД 4-10-4-10-4 (шириной 32 мм) с двумя стеклами с мягкими покрытиями и заполненного криптоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Приведенное сопротивление теплопередаче такого оконного блока составило  1,04 (м2 °С/Вт). Принятые мероприятия по повышению  теплозащитных качеств оконного блока из ПВХ-профиля позволили в несколько раз улучшить его энергоэффективность.

«Теплая» алюминиевая фасадная конструкция

На рис. 14 (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 74) представлена изотерма по сечению теплой алюминиевой фасадной системы со стеклопакетом и алюминиевой дистанционной рамкой. Сопротивление теплопередаче по раме составляет всего 0,29 (м2 °С/Вт), и такое техническое решение не может быть рекомендовано для большинства климатических районов РФ.

«Теплая» алюминиевая фасадная конструкция со стеклопакетом с дистанционной рамкой из термикса

На рис. 15 (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 75) представлена изотерма по сечению теплой алюминиевой фасадной системы со стеклопакетом и дистанционной рамкой из термикса. Сопротивление теплопередаче по раме рассматриваемой фасадной системы при замене алюминиевой дистанционной рамки на термикс увеличивается с 0,29 (м2 °С/Вт) до 0,49 (м2 °С/Вт), и в сочетании с энергосберегающим стеклопакетом это может быть рекомендовано для большинства климатических районов РФ.

«Теплая» алюминиевая фасадная конструкция со стеклопакетом заполненным криптоновой смесью

На рис. 16 (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 75) представлены результаты теплотехнического расчета СПК из теплой фасадной системы  со стеклопакетом 4-10Kr-4И-10Kr-4И, заполненного криптоновой смесью и с дистанционной рамкой  из термикса. Приведенное сопротивление теплопередаче СПК из алюминиевой профильной фасадной системы со стеклопакетом 4-10Kr-4И-10Kr-4И, заполненного криптоновой смесью и с дистанционной рамкой из термикса,  составляет уже 0,95 (м2 °С/Вт)  при степени остекления 0,68.

Итоги исследования и рекомендации

Приведенные выше результаты теплофизических исследований дают основание полагать, что есть все возможности разработать энергоэффективные СПК с сопротивлением теплопередаче 1,0 и более единиц.
Вот некоторые мероприятия по проектированию энергоэффективных СПК.
- Переход с трехкамерного ПВХ-профиля на пятикамерный позволит повысить теплозащитные свойства рамочных ПВХ-элементов до 20%.
- Замещение в межстекольном пространстве воздушной смеси на аргоновую смесь может повысить теплозащитные качества рамочных ПВХ-элементов до 10%.
- Замещение в межстекольном пространстве воздушной смеси на криптоновую смесь может повысить теплозащитные качества рамочных ПВХ-элементов до 20%.
- Применение в стеклопакетах стекол с мягким теплоотражающим покрытием вместо обычных позволит повысить теплозащитные свойства стеклопакетов до 70%.
- Применение в стеклопакетах стекол с мягким теплоотражающим покрытием вместо обычных в сочетании с замещением в межстекольном пространстве воздушной смеси на криптоновую смесь может повысить теплозащитные качества стеклопакетов в три и более раз.
- Замена в стеклопакетах теплопроводной алюминиевой дистанционной рамки на менее теплопроводный термикс существенно повышает температуру поверхности в краевой зоне остекления.
Указанные мероприятия по проектированию энергоэффективных СПК могут быть перенесены на большинство существующих видов светопрозрачных конструкций.
Комплекс приведенных выше мероприятий по повышению энергоэффективности позволит снизить теплопотери через СПК до 2 и более раз.
Повышение энергоэффективности СПК позволит не только снизить теплопотери и привести их к нормативным показателям, но и обеспечит повышение архитектурной выразительности зданий различного назначения и в первую очередь жилых домов как наиболее массового вида строительства. В свою очередь, эти мероприятия уменьшат энергопотребление, снизят потребления топлива, оплату за тепловую энергию, высвобождение дополнительной тепловой мощности, улучшение качества теплоснабжения, повысят экологическую безопасность, а следовательно, улучшат среду обитания человека.

Автор/источник: Журнал Окна. Двери. Фасады. Все статьи Журнал Окна. Двери. Фасады. >>>

Марка «Разные марки» в Каталоге материалов >>>
Поставщики марки «Разные марки» в Каталоге Фирм >>>

Уникальные читатели статьи: 3889
Посетили сегодня: 1 Просмотров статьи: 4351

Последние новости:


    22.02.2020
  • Анкеры GA Hs скрытого крепления НВФ
    Получено техническое свидетельство ФЦН Минстроя РФ за номером ТС 5934-20 на цанговые анкеры GuteAnker марки GA Hs для невидимого способа крепления НВФ....
    19.02.2020
  • Форум фасадных инноваций Building Skin Russia-2020 ждёт профессионалов
    26-27 февраля в Москве пройдет IV Международный форум фасадов Building Skin Russia-2020, который традиционно собирает тысячи архитекторов, проектировщиков, дизайнеров, застройщиков из разных регионов. Австрийская компания Baumit – активный участник форума...
    19.02.2020
  • «ПЕНОПЛЭКС» предлагает пожаробезопасные фасадные системы
    Фасадные системы с применением высококачественной теплоизоляции ПЕНОПЛЭКС® из экструзионного пенополистирола имеют самый высокий класс пожарной безопасности К0 и относятся к непожароопасным. В консервативной части профессионального сообщества строителей...
    18.02.2020
  • PAROC поддержал арт-проект «Цвета потери тепла»
    PAROC поддержал арт-проект «Цвета потери тепла» В российских регионах стартовал необычный социальный арт-проект «Цвета потери тепла». В феврале на улицы семи российских городов выйдут волонтеры, чтобы с помощью тепловизоров провести съемку жилых домов...
    12.02.2020
  • Алексей Поздеев
    Приступили к новому объекту г.Тамбов . Здание ресторана с видом на новый парк в северной части города....
    30.01.2020
  • Подведены итоги конкурса «Мы защищаем профессионалов» 2019
    В 2019 году на конкурс поступило 214 заявок из более 100 городов России, из которых были отобраны 10 финалистов. Три призовые места заняли работы из Самары, Санкт-Петербурга и Старого Оскола. Победителем конкурса стал Александр Матвиенко, менеджер...
    30.01.2020
  • Как склеить стекло, каучук и металл
    3М представляет новую клейкую ленту 3M™ VHB™ LSE для склеивания большинства видов пластика, стекла, каучука, металла, крашеного дерева и композитных материалов. Лента заменяет механические виды крепления, не требует предварительной грунтовки поверхности....
    23.01.2020
  • Устройство,монтаж навесных вентилируемых фасадных систем
    В Санкт Петербурге и области выполним монтаж вентилируемых фасадных систем, свето прозрачных. фасадных ал. конструкций из любых материалов + изделий ПВХ, +++ Преимущество вентилируемого фасада сводится к тому, что точка росы (влага) отодвигается за пределы...
    21.01.2020
  • Отопление WIFI: UniDim расширил линейку автоматики TECH
    С декабря 2019 года интернет-магазин UniDim расширил линейку комплектующими системы “умный дом” производства польского бренда TECH. IT-технологии прочно вошли в быт каждой семьи. Не обошла эта тенденция и автономные системы отопления. И хотя автоматическое...

Представляем лучшие фасадные работы в России и в мире

Фасад лучшего небоскреба 2018 года
Фасад лучшего небоскреба 2018 года
Озелененные фасады - общемировой тренд
Водопад на фасаде небоскреба
Водопад на фасаде небоскреба
Водопад на китайском небоскребе высотой более 100 метров. И что из этого вышло
Бассейн в фасаде небоскреба
Бассейн в фасаде небоскреба
Небоскреб на Гавайях вместил в себя несочетаемое
Мохнатый фасад микро-офиса
Мохнатый фасад микро-офиса
Натуральная щетина в фасаде
 
 

 

 

   
 
Объявления +
22.02.2020
Анкеры GA Hs скрытого крепления НВФ Предлагаем оригинальные анкеры GA Hs, сверла и оборудование для "невидимо го" монтажа НВФ. ..
19.02.2020
Клинкерная плитка Lopo Предлагаем Вашему вниманию клинкерную плитку от Китайского производителя Lopo. Плитка соответствует европейским ..
18.02.2020
производство металлокассет толщиной 0.7мм В Екб открыто Производство кассет из оцинкованной стали. Красим в любые цвета. 1100р м2. Весь крепеж ..
Наши издания
Спец. раздел

Пожаро-
безопасность
фасадов

[ Специальный раздел ]

 


Итоговый ролик Building Skin Russia 2019
4 главных мировых тренда в остеклении. Glasstec 2018
Рынок сэндвич-панелей: низкий и высокий сегменты
Рассылка

Подписаться
на уникальную рассылку: еженедельный
обзор фасадного рынка

E-mail
Имя
Партнеры
 
 
 

Наши проекты:

  



НАШИ ИЗДАНИЯ:

Контакты

Карта сайта

  Портал ФАСАДЫ РОССИИ
Яндекс.Метрика
© Windows Media Group. При копировании информации активная ссылка на www.fasad-rus.ru обязательна!
Телефон редакции: +7 495 374-8905 Реклама на портале
Подпишитесь на рассылку:
Еженедельный обзор фасадного рынка

Ваш E-mail
Ваше имя

[ П р и м е р ]