Ведущие поставщики фасадных материалов на рынок России
Материалов: 1055. Статей: 1110. Компаний: 1171. Марок: 314. Фасадов: 1216. Посетителей в мес: 28194
image1/1x1.gif image1/1x1.gif image1/1x1.gif image1/1x1.gif
 
Зарегистрироваться!

Войти в систему
Ведущие поставщики
Виды фасадов
Вентфасады
Светопрозрачные
Мокрые фасады
Изоляция
Доска объявлений
Предложения
Спрос
Реклама
Фасадные тендеры
 Требуется бригада монтажников НВФ систем
В Лен.обл. 1800 м.кв., 970 р.м.кв.,2 этажа,леса ст.подсистема,вата
 Прием отходов алюминиевых и медных композитных панелей
Прием отходов алюминиевых и медных композитных панелей.Наличный
 нужно 345м2 керамогранит 600*600 У100 полировка
куплю 345м2 керамогранит 600*600 У100 полировка до 30 марта
 требуются постоянные покупатели профилей кронштейнов
производим профиля кронштейны кляммеры, отправляем коробками
 ИЩУ МОНТАЖНИКОВ ФАСАДОВ, БРИГАДУ
Ищу монтажников для работы в Москве на срочный договор
Поиск по порталу
В каталоге фирм
В каталоге материалов
В статьях
Каталог цветов RAL
Мир фасадов  
 Уникальная кирпичная ткань
Компания «Стройинлок» более 20 лет успешно работает на российском...
 Где найти саморезы прочностью А2-70 или А4-70?
Нержавеющий крепёж из коррозионно-стойких сталей марок А2 и А4 по...
 Бассейн в фасаде небоскреба
Небоскреб на Гавайях вместил в себя несочетаемое...
 Почему нержавеющие гайки не всегда получается нормально открутить?
Нержавеющий крепёж из коррозионно-стойких сталей марок А2 и А4 по...
 Проектирование крупноформатной, тонкой облицовки фасадов
Интервью с Александром Галямичевым, МИО, Петербургский университет...
 Требования к эффективным утеплителям для систем фасадных теплоизоляционных композиционных (СФТК)
Данная статья является продолжением темы анализа стандарта ГОСТ Р...
 Фасады в сумраке
Фасады. Это то, что окружает нас, наших детей и родителей. Это то,...
 Стали марки А2 – это «нержавейка»? Мне нужен крепёж из нержавеющей стали AISI 304
Нержавеющий крепёж из коррозионно-стойких сталей марок А2 и А4 по...
Каталог "Лучшие фасады "
Рекламодателям и посетителям портала
Форум
 Полиуретановая лепнина потрескалась
Вадим » Lepka
 Выбор кронштейнов под керамогранит.
Александр екб » алюминь дороже. кроны по высотности от тс зависят. зависит от расположения
 Подсистема для цоколя
Александр екб » взял угол 50х50 вертикально поставил и крепи что хочешь.
as@1fascom.ru
 Фасадные плиты «Виколор»
Александр екб » лет 10 стоят потом выгорать начинают от солнца.
 Какие L-образные кронштейны пользуются большим спросом
Александр екб » 50х50х50мм на ровную стену. дальше от утеплителя.
Новые фирмы на портале
Фасадные панели
(Москва) Продажа сайдинга Альта Профиль
Оптима Фасад
(Москва) Мы производственное предприятие, производитель подсистемы  фасадов
СТРОЙИНЛОК
(Москва) Компания ООО "СТРОЙИНЛОК" - одна из крупнейших торговых
Аланко
(Москва) Сотовые панели, алюминиевые сотовые панели, качественные отделочные
BetON
(Москва) Производство изделий из стеклофибробетона
Премьер Систем
(Новосибирск) Навесные вентилируемые фасадные системы ПРЕМЬЕР
Оптима фасад
(Москва) Производство навесных вентилируемых фасадов, проектирование системы
 
 Главная / Журнал / Раздел: Актуально / Анализируй теплопроводность
   

 
        

Анализируй теплопроводность

Теплопроводность некоторых материалов может меняться. Важно понимать, как быстро это происходит.

Основы теории теплопередачи

Передача внутренней энергии (теплоты) от теплой (здание) или горячей (оборудование) поверхности конструкций в пространство (окружающую среду) называется теплообменом или теплопереносом. Необходимое условие передачи теплоты — перепад температур (температурный градиент). Теплоперенос раскладывается на три элементарных составляющих:

1. Кондуктивная теплопередача — теплоперенос в сплошной среде при непосредственном соприкосновении тел или частиц одного тела, имеющих различные температуры.

2. Конвекция — теплоперенос путем перемещения вещества в пространстве. Свойственно движущимся жидкостям и газам.

3. Тепловое излучение (лучеиспускание, радиация) – теплоперенос в виде электромагнитных волн с двойным взаимным превращением тепловой энергии в лучистую на поверхности тела, излучающего тепло, и лучистой энергии в тепловую на поверхности тел, поглощающих лучистую теплоту. Данная составляющая актуальна при значительном перепаде температур, то есть в изоляции промышленного и энергетического оборудования. В общем виде совокупность этих трех составляющих носит название теплопроводность λ (ранее коэффициент теплопроводности), которая зависит от плотности материала, его температуры и химического состава.

Теплоизоляционные материалы — разновидность строительных материалов, характеризующихся малой теплопроводностью, которая объясняется наличием большого количества пор, заполненных воздухом, являющимся в неподвижном состоянии плохим проводником тепла.

При применении таких материалов в ограждающих конструкциях зданий и сооружений решающее влияние на теплопередачу оказывает кондуктивная составляющая теплопроводности, поскольку воздух в порах близок к неподвижному состоянию, а радиационная составляющая в условиях эксплуатации крайне незначительна. Так описана классическая теория тепловой изоляции [1].

При этом в условиях эксплуатации воздух в порах теплоизоляционных материалов не всегда неподвижен; более того, иногда это не воздух.

Измерение теплопроводности

Теплопроводность λ (Вт/(м К)) измеряют стандартными методами [2–6] при референсных температурах. Для строительных материалов это, как правило, 10 °С, возможны варианты 23 °С [7], 24 °С (Северная Америка), 25 °С (страны СНГ). В любом случае это условный показатель, дающий возможность сравнения теплоизолирующей способности материалов в сухом состоянии. В условиях эксплуатации он меняется в зависимости от количества влаги в материале, причем для разных материалов по-своему.

Принимается, что расчетное термическое сопротивление R ((м2 К)/Вт) определяется по расчетной теплопроводности (с учетом наличия влаги внутри материала) при 10 °С [8].

Очевидно, что 10 °С не может являться средней температурой в ограждающей конструкции в течение всего отопительного периода, тем более на всей территории России. Тем не менее это принято и приемлемо по причинам, описанным далее.

Зависимость теплопроводности от температуры материалов с воздушными порами в условиях эксплуатации зданий и сооружений практически линейная.

Ее можно выразить следующей зависимостью:

λ = λ0 [1+b (t – t0)],

где λ0 — теплопроводность материала при референсной темпереатуре, Вт/ (м К);

b — коэффициент прироста теплопроводности материала при повышении температуры на 1 °С;

t0 — референсная температура, °С;

t – температура, при которой определяется теплопроводность, °С.

Зависимость справедлива для материалов с воздухонаполненными порами. Если же поры заполнены газом или смесью газов, отличных от воздуха (вспенивающий агент), ситуация выглядит иначе. Нетрадиционно.

Газонаполненные пластмассы (пенопласты)

Следует подчеркнуть, что теплопроводность вспенивающих агентов ниже теплопроводности воздуха.

Экструзионный пенополистирол XPS

При производстве XPS в качестве вспенивателей применяют либо хладоны (фреоны) с низкой озоноразрушающей способностью, либо углекислый газ. В дальнейшем сравнительно быстро вспенивающий агент в процессе диффузии замещается воздухом. То есть материал переходит в разряд утеплителей с традиционной теплопроводностью. Насколько быстро? Стандартный срок выдержки материала в нормальных условиях (23 °С и 50% относительной влажности) перед измерением его теплопроводности не превышает 90 суток [9].

Пенополиизоцианурат PIR

Плиты из пенополиизоцианурата, являющегося разновидностью пенополиуретана, их использование технологически невозможно без каких-либо облицовок (бумаги, полимерной пленки, ткани, металлической фольги и др.). Материалы облицовки бывают воздухопроницаемыми, воздухонепроницаемыми или герметичными. Естественно, что максимального теплоизоляционного эффекта можно достичь с герметичной облицовкой, препятствующей относительно быстрому замещению вспенивающего агента воздухом в порах материала. Вопрос о времени полного замещения до конца не изучен. Можно лишь констатировать, что этот процесс идет годами. Здесь и скрыта интересная особенность данного продукта.

Свойства пенополиуретанов и температура

Высокомолекулярные вспенивающие агенты для полиуретанов называют перманентными. Считается, что они сохраняются в материале в течение всего срока эксплуатации. К ним относятся углеводороды (пентан), фторпроизводные углеводородов (хладоны, фреон). Они могут применяться в сочетании друг с другом, а также с диоксидом углерода (СО2), который к перманентным вспенивающим агентам не относится и замещается в процессе диффузии воздухом [10]. Находящийся в порах пенополиуретана газ отличается от воздуха в том числе и температурой, при которой он конденсируется. Теплопроводность жидкости отличается от теплопроводности газа, соответственно, и теплопроводность всего материала будет меняться.

Американская Building Science Corporation (BSC) провела большое исследование [11] с целью оценки теплотехнических свойств ограждающих конструкций (стен) в условиях эксплуатации (рассматривался диапазон температур). Результаты, полученные в процессе испытаний, дали возможность построить графики зависимости теплопроводности различных материалов от температуры. На рисунке представлены эти зависимости для следующих материалов:

Выводы

Термическое сопротивление ограждающих конструкций в России рассчитывается при средней температуре конструкции 10 °С. Разумеется, это лишь референсная температура, не отражающая в полной мере реальные колебания во время отопительного периода. Но, учитывая линейную зависимость теплопроводности традиционных материалов от температуры, расчетное термическое сопротивление может распространяться на любую среднюю температуру в конструкции ниже 10 °С, поскольку создается даже некоторый запас тепловой защиты благодаря понижению теплопроводности.

Теплопроводность изделий из PIR с герметичными облицовками достаточно резко возрастает с пониже- нием температуры, но точка роста и его интенсивность зависят от химического состава вспенивающего агента.

Не учитывать такое явление нельзя, поскольку теплопроводность исследованного BSC пенополиизоцианурата увеличилась практически в три раза при падении температуры от 15 °С до –15 °С, превратив эффективный утеплитель в чуть ли не теплопроводное включение.

Очевидно, что учет должен осуществляться в рамках теплотехнических расчетов ограждающих конструкций. Например, в Северной Америке производители теплоизоляционных материалов стали декларировать теплопроводность не только при стандартных 24 °С (рис. 1), но также при –4 °С, 4 °С и 43 °С. Такой набор реперных температур дает более-менее понятную картину свойств теплоизоляционного материала.

Автор: Алексей Воронин, специалист по стандартизации и нормированию ROCKWOOL

Библиография:

1. Горлов Ю. П., Меркин А. П., Устенко А. А. Технология теплоизоляционных материалов. М., 1980.

2. ISO 8301 Thermal insulation; determination of steady-state thermal resistance and related properties; heat flow meter apparatus.

3. ISO 8302 Thermal insulation; determination of steady-state thermal resistance and related properties; guarded hot plate apparatus.

4. ГОСТ 7076 Материалы и изделия строительные. Метод определения теплопроводности.

5. ГОСТ 31924 Материалы и изделия строительные большой толщины с высоким и средним термическим сопротивлением. Методы определения термического сопротивления на приборах с горячей охранной зоной и оснащенных тепломером.

6. ГОСТ 31925 Материалы и изделия строительные с высоким и средним термическим сопротивлением. Методы определения термического сопротивления на приборах с горячей охранной зоной и оснащенных тепломером.

7. ISO 10456 Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values.

8. СП 50.13330.2012. Свод правил. Тепловая защита зданий.

9. ГОСТ 32310-2012 Изделия из экструзионного пенополистирола XPS теплоизоляционные промышленного производства, применяемые в строительстве. Технические условия.

10. ГОСТ Р 56590-2015 Изделия из жесткого пенополиуретана теплоизоляционные заводского изготовления, применяемые в строительстве. Общие технические условия.

11. Thermal Metric Summary Report. Building Science Corporation.http://www.buildingscience.com/documents/special/content/thermal-metric/BSCThermalMetricSummaryReport_20131021.pdf

Автор/источник: Журнал Лучшие Фасады Все статьи Журнал Лучшие Фасады >>>

Марка «Разные марки» в Каталоге материалов >>>
Поставщики марки «Разные марки» в Каталоге Фирм >>>

Уникальные читатели статьи: 98
Посетили сегодня: 1 Просмотров статьи: 104

Последние новости:


    14.05.2018
  • Ветер сорвал фасад школы в Аниве
    Ветреный циклон, который 27 апреля пришел на Сахалин из Хабаровского края, сорвал фасад школы в Аниве. Почти вся торцевая часть здания оголилась. Дети не пострадали. Как сообщил РИА «Сахалин-Курилы» референт отдела ГО и ЧС районной администрации Александр...
    10.05.2018
  • Итоги форума ArchGlass 2018
    18 и 19 апреля в Москве в Центральном Доме архитектора прошел форум индустрии архитектурного стекла ArchGlass 2018. Мероприятие открыл Николай Шумаков, президент Союза архитекторов России и Союза московских архитекторов. С приветствием выступили главный...
    10.05.2018
  • «IQ-квартал» стал победителем премии CRE Moscow Awards 2018
    МФК «IQ-квартал» (на фото), который компания «Галс-Девелопмент» построила в «Москва-Сити», признали победителем Commercial Real Estate Moscow Awards 2018, 15-й ежегодной профессиональной премии. Номинация – «Лучший многофункциональный комплекс». Церемония...
    10.05.2018
  • Проект нового жилого комплекса на базе «Мосфильма»
    Москомархитектура представила проект многофункционального производственно-культурного центра и жилого комплекса с офисными площадями на базе ФГУП «Киноконцерн «Мосфильм», сообщает Архсовет Москвы. Жилой комплекс, который будет построен на территории...
    08.05.2018
  • Современные материалы и технологии на службе реставраторов
    Как восстановить фарфоровую чашку с помощью материала для изготовления временных коронок, отшлифовать деревянную поверхность старинного стула без пыли или законсервировать медное изделие в жидкости. Реставраторы крупнейших музеев Москвы ознакомились...

Представляем лучшие фасадные работы в России и в мире

Бассейн в фасаде небоскреба
Бассейн в фасаде небоскреба
Небоскреб на Гавайях вместил в себя несочетаемое
Мохнатый фасад микро-офиса
Мохнатый фасад микро-офиса
Натуральная щетина в фасаде
Фасады без углов в Apple Campus 2
Фасады без углов в Apple Campus 2
В 2017 году был реализован масштабный проект кампуса компании Aplpe спроектированный Foster + Partners
Цинк на фасаде снова в моде
Цинк на фасаде снова в моде
Лауреат нескольких американских премий в области архитектурного дизайна облачен в цинк
 
 

 

 

   
 
Объявления +
17.05.2018
фибро плита полная комплектация по вент фасаду плитой 1200*1570*8мм красим в любой цвет as@1fascom.ru ..
16.05.2018
Двусторонний скотч 3М Добрый день. Предлагаю Вам продукцию 3М (двусторонние скотчи, клеи, герметики, абразивные материалы, ..
15.05.2018
Требуется бригада монтажников НВФ систем В Лен.обл. 1800 м.кв., 970 р.м.кв.,2 этажа,леса ст.подсистема, вата 200 мм.,фасонка, керама 60х60 Работы ..
Наши издания
Спец. раздел

Пожаро-
безопасность
фасадов

[ Специальный раздел ]

 


20 лет U-Kon
Итоговый видеоотчет Building Skin Russia 2018
Проектирование крупноформатных фасадов
Рассылка

Подписаться
на уникальную рассылку: еженедельный
обзор фасадного рынка

E-mail
Имя
Партнеры
 
 
 

Наши проекты:

  



НАШИ ИЗДАНИЯ:

Контакты

Карта сайта

  Портал ФАСАДЫ РОССИИ
Яндекс.Метрика
© Windows Media Group. При копировании информации активная ссылка на www.fasad-rus.ru обязательна!
Телефон редакции: +7 495 374-8905 Реклама на портале
Подпишитесь на рассылку:
Еженедельный обзор фасадного рынка

Ваш E-mail
Ваше имя

[ П р и м е р ]